Iterative Neural Autoregressive Distribution Estimator NADE-k

نویسندگان

  • Tapani Raiko
  • Li Yao
  • Kyunghyun Cho
  • Yoshua Bengio
چکیده

Training of the neural autoregressive density estimator (NADE) can be viewed as doing one step of probabilistic inference on missing values in data. We propose a new model that extends this inference scheme to multiple steps, arguing that it is easier to learn to improve a reconstruction in k steps rather than to learn to reconstruct in a single inference step. The proposed model is an unsupervised building block for deep learning that combines the desirable properties of NADE and multi-prediction training: (1) Its test likelihood can be computed analytically, (2) it is easy to generate independent samples from it, and (3) it uses an inference engine that is a superset of variational inference for Boltzmann machines. The proposed NADE-k is competitive with the state-of-the-art in density estimation on the two datasets tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Autoregressive Distribution Estimation

We present Neural Autoregressive Distribution Estimation (NADE) models, which are neural network architectures applied to the problem of unsupervised distribution and density esitmation. They leverage the probability product rule and a weight sharing scheme inspired from restricted Boltzmann machines, to yield an estimator that is both tractable and has good generalization performance. We discu...

متن کامل

A Neural Autoregressive Approach to Collaborative Filtering

This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first describe the basic CF-NADE model for CF tasks. Then we propose to improve the model by sharing parameters between different ratings. A factored ve...

متن کامل

Document Neural Autoregressive Distribution Estimation

We present an approach based on feed-forward neural networks for learning the distribution of textual documents. This approach is inspired by the Neural Autoregressive Distribution Estimator (NADE) model, which has been shown to be a good estimator of the distribution of discrete-valued high-dimensional vectors. In this paper, we present how NADE can successfully be adapted to the case of textu...

متن کامل

A Neural Autoregressive Framework for Collaborative Filtering

Restricted Boltzmann Machine (RBM) is a two layer undirected graph model that capable to represent complex distributions. Recent research has shown RBM-based approach has comparable performance with, even performs better than previous models on many collaborative filtering (CF) tasks. However, the intractable inference makes the training of RBM sophisticated, which prevents it from practical ap...

متن کامل

Multimodal Transitions for Generative Stochastic Networks

Generative Stochastic Networks (GSNs) have been recently introduced as an alternative to traditional probabilistic modeling: instead of parametrizing the data distribution directly, one parametrizes a transition operator for a Markov chain whose stationary distribution is an estimator of the data generating distribution. The result of training is therefore a machine that generates samples throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014